Mathematics
mnt100
2016-04-25 19:50:27
Triangle PQR has vertices at the following coordinates: P(0, 1), Q(3, 2), and R(5, -4). Determine whether or not triangle PQR is a right triangle. Show all calculations for full credit.
ANSWERS
Raisa930
2016-04-26 00:54:25

the answer is yes, and I will give you the calculation soon PQ=[latex] sqrt{3^{2} +1^{2} } [/latex]=[latex] sqrt{10} [/latex] QR=[latex] sqrt{ 2^{2} + 6^{2} } =2 sqrt{10} [/latex] PR=[latex] sqrt{ 5^{2} + 5^{2} } =5 sqrt{2} [/latex] [latex]sqrt{10} ^{2} + (2sqrt{10}) ^{2} =(5 sqrt{2} )^{2} [/latex]

BettyeAbdula983
2016-04-26 00:55:40

Remember. A right triangle has sides a^2 + b^2 = c^2. Conversely, if a triangle has sides a^2+b^2=c^2 then it is a right triangle. So first, find the distance between PQ, QR and RP. Then check to see if any combinations. Does PQ^2 + QR^2  = RP^2,  QR^2 +RP^2  = PQ^2 or  RP^2 + PQ^2  = QR^2. If so, you have a right triangle.

ADD ANSWER